Что такое фондовая биржа Как торговать на бирже
Binomo
Как стать успешным трейдером Стратегии биржевой торговли Лучшие дилинговые центры Forex Лучшие биржевые брокеры
Буренин А.Н. Управление портфелем ценных бумаг

Это добротная книга по теории оптимального портфеля. Написана достаточно академично, поэтому требует определенного уровня подготовленности читателя. Большое достоинство книги в том, что автор приводит конкретные примеры вычислений тех или иных параметров портфеля в Excel. Это делает ее актуальной для практического использования.

Какой Форекс-брокер лучше?          Альпари          Exness          Forex4you          Сделай свой выбор!

ГЛАВА 9. ПАРАМЕТРИЧЕСКАЯ МОДЕЛЬ VaR. 9.1. Абсолютный и относительный VaR

В настоящей главе рассматривается методика определения риска портфеля, получившая название VaR. Мы определим понятия абсолютного и относительного VaR, диверсифицированного и не диверсифицированного VaR и приведем метод расчета параметрической модели VaR. В заключение главы определим понятие EaR.

В 90-е годы прошлого века теория и практика управления портфелем обогатилась концепцией VaR (Value at Risk). На русский язык VaR можно перевести как стоимость (портфеля), которой рискует инвестор. Появление методики VaR объясняется тем, что во многих случаях дисперсия не может рассматриваться как подходящий показатель измерения риска портфеля. Например, дисперсия не учитывает возможную скошенность в распределении доходности портфеля, если оно не является симметричным. Наиболее ярким случаем являются портфели, включающие значительную долю производных инструментов. Таким образом, VaR - это показатель, оценивающий риск портфеля. Следует подчеркнуть, что VaR оценивает рыночный риск. Он позволяет количественно оценить ожидаемые потери в стоимости портфеля в "нормальных условиях" функционирования рынка.

VaR - это показатель риска, который показывает, какую максимальную сумму денег может потерять портфель инвестора в течение определенного периода времени с заданной доверительной вероятностью. Соответственно VaR также говорит о том, что потери в стоимости портфеля в течение этого периода времени будут меньше данной величины с определенной вероятностью. Доверительную вероятность можно определить как показатель, говорящий о том, какое количество раз из каждых 100 раз потери в стоимости портфеля не превысят данного уровня. Поэтому VaR призван ответить на следующий вопрос: "Какой может оказаться максимальная потеря в стоимости портфеля, например, в 95% случаев в течение следующего дня?" Уровень доверительной вероятности задается заранее и зависит от характера компании, владеющей портфелем, и от субъективного подхода управляющего портфелем к этому вопросу. Обычно он равен 95% или 99%. Следует подчеркнуть, что выбор того или иного уровня доверительной вероятности не говорит об отношении инвестора к риску, так как VaR - это только определенная точка в распределении ожидаемых результатов доходности портфеля.

Пусть стоимость портфеля инвестора составляет 100 млн. руб., VaR для одного дня равен 2 млн. руб. с доверительной вероятностью 95%. Данную информацию можно интерпретировать следующим образом: а) вероятность того, что в течение следующих 24 часов потери в стоимости портфеля составят меньше 2 млн. руб. равна 95% или б) вероятность того, что в течение следующих 24 часов потери в стоимости портфеля превысят 2 млн. руб. равна 5%, или в) инвестор вправе ожидать, что в среднем его потери в течение 95 дней из каждых 100 дней не превысят 2 млн. руб., или что они окажутся больше 2 млн. руб. в течение 5 дней из каждых 100 дней.

При расчете VaR для некоторого временного интервала предполагается, что состав портфеля за этот период остается неизменным. В противном случае необходимо пересчитывать и значение VaR, так как новые активы, включаемые в портфель, как правило, изменяют и его риск.

Наиболее распространенный период, для которого рассчитывается VaR, -это один день или точнее - 24 часа. Однодневный VaR также обозначают как DEaR (Daily Earning at Risk). Базельский банк международных расчетов рекомендует банкам рассчитывать 10-дневный VaR с доверительной вероятностью 99% для определения минимального уровня собственных средств. Можно рассчитывать данный показатель и для более длительных периодов времени. Однако в этом случае состав портфеля должен оставаться неизменным. Для крупных институциональных инвесторов это условие вряд ли выполнимо. В целом, чем больше период времени, для которого рассчитывается VaR, тем больше будет и его величина, так как естественно, что на более длительном отрезке времени возрастает и вероятность более крупных потерь. Выбор более короткого периода VaR диктуется и самим подходом к статистической оценке данного показателя. Чтобы получить объективную оценку VaR, необходимо некоторое минимальное количество наблюдений. Например, если для оценки требуется 250 наблюдений, то однодневный VaR можно определить на основе данных за один год. Если же определяется десятидневный VaR, то 250 наблюдений с не перекрывающимися периодами в десять дней потребуют данных практически за семь лет. Для текущей оценки данные семилетней давности могут оказаться уже и не достаточно представительными. Кроме того, по ряду инструментов они могут просто отсутствовать физически.

При анализе риска с помощью VaR задача сводится к тому, чтобы построить распределение убытков и прибылей, которые может принести портфель инвестора в течение определенного периода времени и определить ту точку на этом распределении, которая бы соответствовала требуемому уровню доверительной вероятности. Существуют разные методики определения VaR, Все их можно разделить на две группы: параметрические модели (их еще называют аналитическими или дисперсионно-ковариационными) и непараметрические модели. Модель называется параметрической, если нам известна функция распределения случайной величины и параметры ее распределения. В параметрической модели VaR предполагается, что доходность финансовых активов следует определенному виду вероятностного распределения, обычно нормального. Используя прошлые данные статистики, определяют ожидаемые значения доходностей, дисперсий и ковариаций доходностей активов. На их основе рассчитывают VaR портфеля для заданного уровня доверительной вероятности по следующей формуле:

Буренин А.Н. Управление портфелем ценных бумаг

Примером параметрической модели VaR являются "Рискметрики" банка Дж.П.Морган, обнародованные им в 1994 г.

Пример 1.

Определить однодневный VaR с доверительной вероятностью 95% для портфеля стоимостью 10 млн. руб., в который входят акции только одной компании. Стандартное отклонение доходности акции в расчете на год равно 25%.

Решение.

Так как необходимо определить однодневный VAR, то вначале рассчитаем стандартное отклонение доходности акции для одного дня, учитывая, что в году 250 торговых дней:

Буренин А.Н. Управление портфелем ценных бумаг

По таблице нормального распределения (функция Лапласа) находим, что уровню доверительной вероятности в 95% соответствует 1,65 стандартных отклонений. VaR портфеля равен:

Буренин А.Н. Управление портфелем ценных бумаг

Таким образом, в течение следующих 24 часов максимальные потери в стоимости портфеля инвестора с доверительной вероятностью 95% могут составить 260,7 тыс. руб. Другими словами, в течение следующих 24 часов вероятность потерять сумму денег меньше 260,7 тыс. руб. равна 95%, а сумму больше 260,7 тыс. руб. - 5%.

Существуют понятия абсолютного и относительного значения VaR. В приведенном выше примере был представлен абсолютный VaR. Абсолютный VaR можно определить как максимальную сумму денег, которую может потерять портфель инвестора в течение определенного периода времени с заданной доверительной вероятностью. Относительный VaR отличается от абсолютного тем, что он рассчитывается относительно ожидаемой доходности портфеля. Его значение учитывает, что инвестор с заданной вероятностью не только может потерять сумму равную абсолютному VaR, но и не получить сумму равную средней ожидаемой доходности портфеля за рассматриваемый период. Так, в примере 1 однодневный абсолютный VaR с доверительной вероятностью 95% составлял 260,7 тыс. руб. Допустим, что на основании данных за прошлый год средняя доходность портфеля за день составляла 0,1%. От 10 млн. руб. это составляет 10 тыс. руб. Тогда относительный VaR равен:

Буренин А.Н. Управление портфелем ценных бумаг

Если ожидаемая доходность портфеля равна нулю, то значения абсолютного и относительного VaR совпадают.

Рассмотрим еще один пример на расчет абсолютного значения VaR.

Пример 2.

Определить однодневный VaR с доверительной вероятностью 95% для портфеля стоимостью 10 млн. руб., в который входят акции двух компаний. Уд. вес первой акции в стоимости портфеля составляет 60%, второй - 40%. Стандартное отклонение доходности первой акции в расчете на один день равно 1,58%, второй - 1,9%, коэффициент корреляции доходностей акций равен 0,8.

Решение.

Определяем стандартное отклонение доходности портфеля:

Буренин А.Н. Управление портфелем ценных бумаг

По таблице нормального распределения (функция Лапласа) находим, что уровню доверительной вероятности в 95% соответствует 1,65 стандартных отклонений. По формуле (9.1) определяем VaR портфеля:

Буренин А.Н. Управление портфелем ценных бумаг

Аналогично примеру 2 находится VaR для портфеля, состоящего и из акций большего количества компаний. В этом случае дисперсия доходности портфеля рассчитывается по формуле (1.30).

При расчете риска портфеля вместо формулы (1.30) удобно воспользоваться матричной формой записи (см. формулу (1.39)). Тогда дисперсию доходности портфеля в примере 2 найдем как:

Буренин А.Н. Управление портфелем ценных бумаг

где 2,4 - ковариация доходностей акций.

Стандартное отклонение доходности портфеля равно:

Буренин А.Н. Управление портфелем ценных бумаг

В примере 2 VaR можно определить также другим способом. Вначале определить VaR по каждой акции и после этого VaR портфеля. В этом случае VaR портфеля рассчитывается по формуле:

Буренин А.Н. Управление портфелем ценных бумаг

где V - матрица-столбец значений VaR по каждой бумаге;
VT- транспонированная матрица-столбец значений VaR по каждой бумаге, т.е. матрица-строка;
р - корреляционная матрица размерности пхп (п - число активов в портфеле).

Определим в примере 2 абсолютный VaR для первой акции:

Буренин А.Н. Управление портфелем ценных бумаг

Абсолютный VaR для второй акции равен:

Буренин А.Н. Управление портфелем ценных бумаг

Абсолютный VaR портфеля составляет:

Буренин А.Н. Управление портфелем ценных бумаг

Инвестор может держать средства в иностранных ценных бумагах. В этом случае он подвергается помимо риска падения курсовой стоимости бумаг и валютному риску. Риск состоит в том, что иностранная валюта подешевеет. В результате ее конвертации в национальную возникнут потери. Поэтому показатель VaR портфеля должен отразить данный факт. Рассмотрим вначале портфель, состоящий из одной акции иностранной компании.

Пример 3.

Российский инвестор купил акции компании А на 357,143 тыс. долл. Стандартное отклонение доходности акции составляет 1,58%. Курс доллара 1долл.=28 руб., стандартное отклонение валютного курса в расчете на один день 0,6%, коэффициент корреляции между курсом доллара и ценой акции компании А равен 0,2. Определить VaR портфеля инвестора с доверительной вероятностью 95%.

Решение.

Текущий курс доллара равен 28 руб., поэтому рублевый эквивалент позиции инвестора составляет:

Буренин А.Н. Управление портфелем ценных бумаг

Это означает, что в настоящий момент инвестор рискует суммой в 10 млн. руб., и данный риск обусловлен двумя факторами: возможным падением котировок акций компании А и падением курса доллара. Реализация любого из данных рисков приведет к падению стоимости портфеля ниже суммы в 10 млн. руб. Поскольку цена акций компании А и валютный курс имеют корреляцию существенно меньшую чем плюс один, то общий риск портфеля уменьшается за счет эффекта диверсификации. Поэтому дисперсия доходности портфеля равна:

Буренин А.Н. Управление портфелем ценных бумаг

Стандартное отклонение доходности составляет:

Буренин А.Н. Управление портфелем ценных бумаг

Однодневный VaR портфеля равен:

Буренин А.Н. Управление портфелем ценных бумаг

В данной задаче дисперсию портфеля можно было определить с помощью матричного исчисления, а именно:

Буренин А.Н. Управление портфелем ценных бумаг

В примере 2 мы привели еще один способ нахождения VaR портфеля с помощью формулы (9.2) на основе расчета VaR по каждому активу. Решим пример 3 с помощью данной формулы. Вначале определяем показатели VaR для акции (VaRa) и валютного курса (VaRb):

Буренин А.Н. Управление портфелем ценных бумаг

VaR портфеля составляет:

Буренин А.Н. Управление портфелем ценных бумаг

Рассмотрим пример, когда портфель инвестора включает разные валюты.

Пример 4.

Курс доллара составляет 1долл.=28 руб., курс евро - 1евро=34 руб. Банк купил на спотовом рынке 357,143 тыс. долл. и осуществил короткую продажу 294,118 тыс. евро. Стандартное отклонение курса доллара в расчете на один день составляет 0,6%, евро - 0,65%, коэффициент корреляции равен 0,85. Определить однодневный VaR портфеля с доверительной вероятностью 95%.

Решение.

Рассчитаем VaR в рублях, так как банк закроет свои позиции в иностранных валютах, конвертировав их в рубли. Долларовая позиция банка в рублях составляет:

Буренин А.Н. Управление портфелем ценных бумаг

Позиция по евро в рублях:

Буренин А.Н. Управление портфелем ценных бумаг

Поскольку банк продал евро, то для дальнейших расчетов его позицию следует записать со знаком минус, т.е. - 10млн.руб.

VaR по долларовой позиции равен:

Буренин А.Н. Управление портфелем ценных бумаг

VaR по евро равен:

Буренин А.Н. Управление портфелем ценных бумаг

VaR портфеля согласно формуле (9.2) составляет:

Буренин А.Н. Управление портфелем ценных бумаг

В приведенных выше примерах мы рассчитывали однодневный VaR на основе стандартных отклонений для одного дня. Однако данные могут быть заданы в расчете на год. Один из вариантов расчета состоит в том, чтобы перевести годичное стандартное отклонение в однодневное по формуле:

Буренин А.Н. Управление портфелем ценных бумаг

После этого можно воспользоваться приведенными выше алгоритмами.


А знаете ли Вы, что: Форекс-брокер Exness ни под каким предлогом не отменил ни одного ордера своих клиентов без их согласия за всю историю своего существования.

С уважением, Админ.


Другой подход состоит в том, чтобы матрицу ковариаций, составленную из годичных значений, перевести в матрицу с однодневными значениями. Кроме этого, данную матрицу также удобно сразу скорректировать в соответствии с заданным уровнем доверительной вероятности. Тогда годичную матрицу ковариаций следует умножить на коэффициент:

Буренин А.Н. Управление портфелем ценных бумаг

Пример 5.

Пусть в примере 4 годичное стандартное отклонение изменения курса доллара равно 9,4868%, а евро - 10,2774%, количество торговых дней в году 250. Определить однодневный VaR для доверительной вероятности 95%.

Решение.

Коэффициент К равен:

Буренин А.Н. Управление портфелем ценных бумаг

Ковариационная матрица на основе годичных значений равна (стандартные отклонения берем в десятичных значениях):

Буренин А.Н. Управление портфелем ценных бумаг

Умножим матрицу В на коэффициент К. Получим матрицу Q':

Буренин А.Н. Управление портфелем ценных бумаг

После этого VaR портфеля находим по формуле:

Буренин А.Н. Управление портфелем ценных бумаг

VaR портфеля согласно формуле (9.3) равен:

Буренин А.Н. Управление портфелем ценных бумаг

В примерах мы рассчитывали VaR с учетом корреляций между активами портфеля. Такой VaR называют диверсифицированным. Если определить VaR без учета корреляций, то получим не диверсифицированный VaR. Он представляет собой простую сумму индивидуальных VaR активов портфеля. Покажем это для портфеля из двух активов. Пусть стандартные отклонения и уд. Веса первого и второго активов соответственно равны сг1, вх и ст2, в2, стоимость портфеля составляет Р. Тогда VaR портфеля для уровня доверительной вероятности а равен:

Буренин А.Н. Управление портфелем ценных бумаг

или

Буренин А.Н. Управление портфелем ценных бумаг

или

Буренин А.Н. Управление портфелем ценных бумаг

Если коэффициент корреляции между доходностями активов равен единице, то формула (9.4) принимает вид:

Буренин А.Н. Управление портфелем ценных бумаг

или

Буренин А.Н. Управление портфелем ценных бумаг

Формула (9.5) говорит о том, что в случае полной положительной корреляции между активами VaR портфеля является суммой индивидуальных VaR входящих в него активов. Поскольку корреляции могут изменяться со временем, то наряду с показателем диверсифицированного VaR целесообразно рассчитывать и не диверсифицированный VaR. Он покажет максимум возможных потерь (при нормальных условиях рынка) для данного уровня доверительной вероятности в случае неустойчивости корреляций или ошибки их оценок.

Допущение нормальности распределения доходности портфеля позволяет легко переводить значения VaR из одного уровня доверительной вероятности в другой. VaR портфеля для доверительной вероятности z1 равен:

Буренин А.Н. Управление портфелем ценных бумаг

для доверительной вероятности z2:

Буренин А.Н. Управление портфелем ценных бумаг

Выразим значение Ра из формулы (9.6):

Буренин А.Н. Управление портфелем ценных бумаг и подставим в формулу (9.7):

Буренин А.Н. Управление портфелем ценных бумаг

Таким образом, зная величину VaR1 для доверительной вероятности z1, по формуле (9.8) легко получить VaR2 для доверительной вероятности z2.

Аналогичным образом можно пересчитывать значения VaR для разных периодов времени. Пусть VaR портфеля для периода t1 равен:

Буренин А.Н. Управление портфелем ценных бумаг

для периода t2:

Буренин А.Н. Управление портфелем ценных бумаг

Выразим значение Paz из формулы (9.9):

Буренин А.Н. Управление портфелем ценных бумаг

и подставим в формулу (9.10):

Буренин А.Н. Управление портфелем ценных бумаг

Таким образом, зная величину VaR1 для периода времени t1, по формуле (9.11) легко получить VaR2 для периода времени t2.
Содержание Далее

Что такое фондовая биржа
Яндекс.Метрика